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Presentation Outline

* Distributed Generation: trends and policies in US
* District Energy System Optimization Tools

* Distributed Energy System/Microgrid pilots




Trends in Distributed Generation in US i
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e Distributed Generation

 avariety of technologies that generate electricity at or near
where it will be used, such as solar panels and combined
heat and power.

* Distributed generation may serve a single structure, such as
a building, or be part of a microgrid, such as at a industrial
park, a military base, or a large college campus.

* Solar, gas turbine/engines, fuel cells, biomass

 The Major sources of Distributed Generation includes
* Rooftop solar, fastest growing
* CHP, the largest source, about 8% of power capacity

* Increasing interests in District Energy Systems with
microgrids to improve resilience



Growing at 60%, expected to reach 20 GW by 2020 -
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Cumulative Solar PV Capacity through Q2 2016 (MW-dc)
Source: SEIA/GTM Research U.S. Solar Markef insight Q4 2015
greentechmedia com/research/ussmi
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Multiple Deployment Drivers e
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* Falling costs and improving performance
* Policy intervention at national and state levels

 Business and financing innovations
* third party ownership
 private loans, PACE, etc.

* shared / community solar




Prices for Distributed Solar Continue to Decline ﬁ
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Average annual decline since 2009: 11% per year (res.) to 16% (large
non-res). From 2014-15: 5% per year (res.) to 9% (large non-res.)
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Median installed price series is based on data from 451,693 systems, assembled by Berkeley Lab (trackingthesun.lbl.gov). Module
price index is from SPV Market Research.




Even Lower-Cost Systems Are Commonplace: oy
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Installed Price Declines Have Been Partially oy

1
Offset by Falling State and Utility Incentives

Reductions in rebates and PBIs since their peak equate to 60% to 120% of the
corresponding drop in installed prices
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Notes: The figure depicts the pre-tax value of rebates and PBI payments (calculated on a present-value basis) provided through
state/utility PV incentive programs, among only those systems that received such incentives. Although not shown in the figure, a growing
portion of the sample received no direct cash incentive.



Federal Policy Drivers: 2l
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« 30% investment tax credit (ITC)
« Extended to 2021 (for projects
started)
* Drops to 10% for commercial
entities, phased out for residential i ERE TG EEEE

customers extension of the ITC 9 4

30% 30% 30% 30%

26%

* Accelerated tax depreciation 2%

o 5-yea r te rm = permanent 10%

for commercial credit

 J Clean Power Plan 2016 2017 2018 2019 2020 2021 2022

Source: http://news.energysage.com/congress-extends-the-
solar-tax-credit/

e Potential impacts after 2020
* Fate and impact highly uncertain



EPA Carbon Reduction in Power Sector =2
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« Two components: new fossil plants, existing fossil plants
* New plants: new coal effectively precluded absent CCS

* Existing plants = Clean Power Plan (CPP), 32% reduction by 2030
relative to 2005, compliance period begins in 2022

« Many compliance options: rate- vs. mass-based, new complement,
EGU vs. state measures, regional collaboration, set-asides, early
incentive program—> decisions to be made at state level

e How will RE contribute? Who knows???

* Depends on decisions, including
states & obligated entities

E&E’s
POWER PLAN
‘ - HUB »ﬂ\’\’* ME

EPA estimate: growth from 13%
today to 20% by 2030

 Supports growth consistent with

past: deployment “floor”
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State Policy Drivers ]
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 Renewables Portfolio Standards
« 22 States + DC have an RPS with solar or DG provisions

Renewable Portfolio Standards (RPS) with Solar or Distributed Generation Provisions

* Net Metering and Favorable Rates
« 41 states and the District of Columbia require
certain utilities to offer net metering to
distributed solar customers as of the
beginning of 2016.

www.dsireusa.org / August 2016 :"' e mﬂ; 2‘322” o
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22 States + DC have
an RPS with solar or
DG provisions

« State Tax and Financial Incentives
« State tax credits
« State sales/property tax incentives
« Up-front cash rebates
* Performance based incentives

« 3rd Party Solar PV Power Purchase Agreement (PPA) [ 7 WA
+ At Least 26 States + DC and Puerto Rico authorize | = e v .
or allow 3rd Party Power Purchase Agreements for -~ ..
Solar PV |

More information on solar programs and policies: [ o ety st PuthaseAgeomers o

D Authorized by state or otherwise currently in use, at least in certain jurisdictions

http://programs.dsireusa.org/system/program/maps D=

3'd Party Solar PV Power Purchase Agreement (PPA)

www.dsireusa.org / July 2016
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LA, S, SC: Solar leases
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+ Washington DC and

,/ U.S. Territories
Guam | USVI Puerto Rico Authorize or



41 States + DC,
AS, USVI, & PR have
mandatory net
metering rules

erritories:

tme

| ertain utilities (41 states + DC+ 3 territories)

ilities allow ne tering (2 states




Under Net Metering, Rate Design Is Key WW

California has been home to among the most
attractive retail rates

e Rate tiers that increase with usage
e Primarily volumetric rates, with low fixed charges

Rate designs that are less attractive for solar
generally feature...

e Low overall retail rate levels
e Higher fixed customer or standby charges
e Demand charges tied to peak customer load

15



Trends in Distributed Generation: CHP )
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US CHP Capacity: 85% Industrial

90,000
80,000
® Industrial
70,000 +——
M Institutionaland
Commercial
80,000 == mother
§ 50,000
z
2
a 40,000
3
30,000
20,000 A
10,000
0
Q ) o N O 3 N o \e) v e o & O "
)
&P \.& RORC R N, U N . m°°° & FF

Source: ACEEE, 2016. http://aceee.org/blog/2016/02/brief-history-chp-development-united



Trends in Distributed Generation: CHP i
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* CHP

e 83 GW, ~“8% of power capacity & 12% generation
 Additional 40 GW target by 2030

* |n CA, the installed capacity in 2012 was 8,815
megawatts (MW), another 6,500 MW by 2030

e However, the future is less clear for CHP to meet
the long-term GHG target of 80% reduction.




Federal and State Policy Support: CHP :ﬁ\l

 Federal
* Tax credit: 10% of expenditures of CHP (EE>60%)
e DOE 7 CHP Technical Assistance Partnership

* CAincentives
e SGIP

« conventional CHP technologies $S0.50/ watt and

» fuel cells $2.25/watt for both electric only and CHP
applications.

* The biogas incentive $2/watt
 PACE: non-residential buildings
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Berkeley Lab’s District Energy Optimization
Tool

MOD-DEM: Microgrid Optimal Dispatch
with Demand-side Energy Management



Model concept ZEAFHE o
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Electric vehicles Bonlers and chillers

Demand side Supply side
* Lower peak energy usage * Microgrid to integrate distributed
* Bring higher capacity factor and generation and storage
security of distribution grids e Combined heat and power

Challenge: Coordinate both the demand and supply sides in a renewable-
penetrated, storage augmented, DR-enabled microgrid



Motivation Z#L recee
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* DES as a smart prosumer: 7341 2CREIRAE N — N HERE

W54

o Optimize operation by effective coordination of technologies
(storages, CHP, etc.) in accord with renewable generation and
demand response signals

o Investigate dispatch strategies under uncertainty

* DES as a smart partner with the grid: 7341 ZCEETR 2 K
L R ) — N Be A A

o Offer ancillary service for overall efficiency and grid stability

o Encourage more demand side participation in the market and
appropriately valuing demand response

* Retail market optimization k5 T HEIRZEE 1Y)




Case Study: Excessive renewables generation

~
: A
iseenals

S5 + 4 R B Bl Y 4 B TR B A B e

e Scenario:;

o Excessive renewables
(wind/solar)-> triggers price
drop - DR to prefer electricity

o DES: heating + electric loads
(elastic / inelastic)
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Case Study: Excessive renewables generation reorer?|f
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Electric boiler switched on
during DR to convert excess

* Heating balance: electric + natural

gaS boiler electricity to heat
. . |-- electricity — heatl
o NG is used as a default in most of o e e e
the time ﬂ

o Shifting to electric boiler to use
more electricity

input/output(MW)
(=]
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o Excess heat generation is stored for |
later use Heat tank is charged during DR
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Distributed energy micorgrid case study
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U.C. Irvine Microgrid Cost-Benefit Results R

* Cost benefit analysis of microgrid technologies using microgrid
tools
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Thank you!

Visit us: China.lbl.gov



